Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:

Abstract

Due to different reasons a significant modal shift from railway to road transport took place over last decades. The basic reasons are pointed in the paper introduction together with contradicting transport policy taking into account environmental and economical challenges. Political vision to stimulate modal shift from road and air to railway cannot become true without achieving railway technical and operational interoperability. Paper describes wide range of technical barriers between individual intraoperable railway systems in civil engineering structures, traction power supply, control command and signalling and the ways, which are being applied to ensure stepwise converging of the technical solutions taking into account safety and technical compatibility, as well as other essential requirements, namely: reliability, accessibility, health and environment.
Go to article

Abstract

In order to improve the efficiency and ensure the security of power supply used in a mine, this paper mainly studies the quasi-resonant flyback secondary power supply and analyzes its operational principles based on the requirements of soft-switching technology. In accordance with the maximum energy of a short-circuit and the request of maximum output voltage ripple, this paper calculates the spectrum value of the output filter capacitor and provides its design and procedures to determine the parameters of the main circuit of power supply. The correctness and availability of this theory are eventually validated by experiments.
Go to article

Abstract

The influence and the potential risk due to hidden faults of a relay protection system on power supply in distribution systems are paid more and more attention to. A probability analysis method is used to analyse fault characteristics and action mechanism of dominant faults, hidden misoperation and non-operation of the relay protection systems, and failure probability model of relay protection system is constructed and simplified. The effects of dominant faults, hidden misoperation and non-operation of the relay protection systems on the reduced power supply load power are analysed, and a probabilistic model for reduced power supply load power is constructed by three parts corresponding to dominant faults, hidden misoperation and non-operation. A probability calculation method of power supply risk occurrence due to hidden faults of relay protecttion system is proposed considering the fault probability of the relay protection systems, the frequency of the hidden faults occurring in operation period, the reduced power supply load power or load power outage, and the connection mode of the in-lines, out-lines and transformers in a substation. The feasibility and applicability of the proposed method for estimation of risk value probability of the relay protection systems is verified by two studied examples.
Go to article

Abstract

The article concerns safety of power supply for the final consumers, especially its two comprising elements, which are generation adequacy and distribution system reliability. Generation adequacy has been defined with Loss of Load Probability (LOLP), Loss of Load Expectation (LOLE) and Energy Not Supplied (ENS) indices. Conclusions from generation adequacy forecast prepared by ENSTO-E for Poland compared with other European countries for the years 2020 and 2025 have been discussed along with the resulting threats. Interruptions in energy supply have been characterised by power discontinuity indicator SAIDI. Finally, a reliability and adequacy analysis have been performed for different scenarios of the Polish power system operation in order to assess possibilities of using distributed generation as a backup power source. Based on a simulation model created using the DIgSILENT Power Factory software, the reliability and adequacy calculations have been performed with the probabilistic non-sequential Monte Carlo method and they are followed by a discussion of the obtained results.
Go to article

Abstract

The paper looks at the issues of operation safety of the national power grid and the characteristics of the national power grid in the areas of transmission and distribution. The issues of operation safety of the national transmission and distribution grid were discussed as well as threats to operation safety and security of the electricity supply related to these grids. Failures in the transmission and distribution grid in 2017, caused by extreme weather conditions such as: a violent storm at the night of 11/12.08.2017, hurricane Ksawery on 5–8.10.2017, and hurricane Grzegorz on 29–30.10.2017, the effects of which affected tens of thousands of electricity consumers and led to significant interruptions in the supply of electricity were presented. At present, the national power (transmission and distribution) grid does not pose a threat to the operation safety and security of the electricity supply, and is adapted to the current typical conditions of electricity demand and the performance of tasks during a normal state of affairs, but locally may pose threats, especially in extreme weather conditions. A potentially high threat to the operation safety of the national power grid is closely linked to: age, technical condition and the degree of depletion of the transmission and distribution grids, and their high failure rate due to weather anomalies. Therefore, it is necessary to develop and modernize the 400 and 220 kV transmission grids, cross-border interconnections, and the 110 kV distribution grid (especially in the area of large urban agglomerations), and the MV distribution grid (especially in rural areas). The challenges faced by the transmission and distribution grid operators within the scope of investment and operating activities, with a view to avoiding or at least reducing the scale of grid failures in the case of future sudden high-intensity atmospheric phenomena, are presented.
Go to article

Abstract

Along with the increase in the use of nonlinear electronic devices, e.g. personal computers, power tools and other electrical appliances, the requirements for uninterruptible power supplies are constantly growing. This paper proposes a method and deep analysis of results viable for checking how single-phase uninterruptible power supplies (UPSs) cope with nonlinear circuits under varying power loads in terms of electric energy quality.Various classes of single-phase UPS systems with different topologies were tested, for instance line-interactive and double conversion (online) single-phase UPS devices. Furthermore, measurements were carried out in view of a power source – loads were supplied both from a power grid and UPS built-in battery. Juxtaposition of the obtained results such as a THDU, THDI (Total Harmonic Distortion) percentage ratio of input/output voltage and current, a power factor and crest factor volume etc. of the tested UPS systems indicated major differences in their performance during laboratory tests.
Go to article

Abstract

This original paper deals with a new approach for the study of behavior in nonlinear regime of a new three-phase high voltage power supply for magnetrons, used for the microwave generators in industrial applications. The design of this system is composed of a new three-phase leakage flux transformer supplying by phase a cell, composed of a capacitor and a diode, which multiplies the voltage and stabilizes the current. Each cell. in turn, supplies a single magnetron. An equivalent model of this transformer is developed taking into account the saturation phenomenon and the stabilization process of each magnetron. Each inductance of the model is characterized by a non linear relation between flux and current. This model was tested by EMTP software near the nominal state. The theoretical results were compared to experimental measurements with a good agreement. Relative to the current device, the new systemprovides gains of size, volume, cost of implementation and maintenance which make it more economical.
Go to article

Abstract

The paper presents an overview of a method of nanosecond-scale high voltage pulse generation using magnetic compression circuits. High voltage (up to 18 kV) short pulses (up to 1.4 μs) were used for Pulsed Corona Discharge generation. In addition, the control signal of parallel connection of IGBT and MOSFET power transistor influence on system losses is discussed. For a given system topology, an influence of core losses on overall pulse generator efficiency is analysed.
Go to article

Abstract

The presented work gives an overview on simulation and experimental results of the power supply parameters’ influence on DBD discharge uniformity. The proposed study is about the use of quasi-pulsed, power electronic power supply and a saturable inductor in series with the discharge cell [1]. The simulation results are presented with a parallel DBD reactor model with linear critical voltage distribution. A more uniform current waveform is observed, however, due to small reactor capacitances no streamer formation could be verified in calculations. An experimental test stand was prepared with a double dielectric barrier discharge arrangement. The experimental results are presented with regard to the electrical oscilloscope waveforms and ICCD camera imaging. A more homogenous plasma was observed in the case of saturable inductor with saturation current set at the point of discharge formation. Two possible mechanisms are connected with this phenomenon – inductive element current support during discharge and/or current rise-time limitation [1].
Go to article

Abstract

This article presents the main stages and challenges in modelling and designing of modern ultrasonic welding and cutting systems. First, the key components of such a system, such as an ultrasonic stack (con- sisting of a high power ultrasonic transducer and a sonotrode) and a digitally controlled ultrasonic power supply with precise control of the output power, have been considered. Next, a concept of measurement system for verification and validation of mathematical models of ultrasonic stacks and its components has been presented. Finally, a method of ultrasonic stack e-diagnosis based on ultrasonic transducer electrical impedance measurement during welding and cutting process has been described
Go to article

This page uses 'cookies'. Learn more