Search results

Filters

  • Journals
  • Date

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

The five-layer Aurivillius type structures with the general chemical formula Bi5Fe2-xMnxTi3O18, where x = 0, 0.6, 1.2 have been synthesized and tested. The SEM studies showed a significant increase in grain size in the manganese-modified Aurivillius type ceramic material (for x = 1.2). The increase in the amount of manganese ions (Mn3+) affects the decrease in the temperature at which the relaxation processes take place. Namely from 525 K (1 kHz) and 725 K (1 MHz) for BFT sample (x = 0) to 355 K (1 kHz) and 565 K (1 MHz) for BFM12T sample (x = 1.2). Using the Arrhenius’s law and the Vogel-Fulcher’s relationship the activation energy (Ea) and the relaxation time have been calculated. The value of Ea increases with the increase of the Mn amount from 0.737 eV (for x = 0) to 0.915 eV (for x = 1.2).
Go to article

Abstract

Multiferroic composites are very promising materials because of their applicability because the magnetoelectric effect occurs in them. The subject of the study were two multiferroic ceramic composites: leaded obtained from powder of the composition PbFe0.5Nb0.5O3 and ferrite powder of the composition Ni0.64Zn0.36Fe2O4 and unleaded which was obtained from the powder of the composition BaFe0.5Nb0.5O3 and the same ferrite powder Ni0.64Zn0.36Fe2O4. For the both multiferroic materials the following studies were conducted: SEM, BSE, EDS, XRD and the temperature dependence of dielectric constant ε(T). Using the previously developed method of calculating the magnetoelectric coupling factor (g), based on dielectric measurements, the magnitude of the magnetoelectric effect in the multiferroic composites was determined.
Go to article

This page uses 'cookies'. Learn more